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Abstract

In this paper we introduce the subclass of uniformly convex and starlike func-
tions which are analytic and multivalent with negative coefficients defined by using
fractional calculus operators. Characterization property exhibited by the functions
in the class and the results of modified Hadamard product are discussed. Con-
nection with the popular subclasses like β-uniformly starlike, convex, pre-starlike,
parabolic starlike and convex functions are also pointed out. Growth and distor-
tion theorems, closure property, extreme points, class preserving integral operators,
region of p-valency and other interesting properties of the class are also included.
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1. Introduction

Let Ap denote the class of functions of the form

f(z) = zp +
∞∑

k=p+n

akz
k (p, n ∈ IN) (1.1)

121



122 S. V. Parmar and S. M. Khairnar

which are analytic and multivalent in the open disc E = {z : z ∈ C and |z| < 1}. Also

denote Tp, the subclass of Ap consisting of functions of the form

f(z) = zp −
∞∑

k=p+n

akz
k (p, n ∈ IN ; ak ≥ 0). (1.2)

A function f(z) ∈ Ap is said to be β-uniformly starlike of order α, (−p ≤ α < p), β ≥ 0

and z ∈ E, denoted by β − S(α, p), if and only if

Re

{
z
f ′(z)

f(z)
− α

}
≥ β

∣∣∣∣z f ′(z)f(z)
− p
∣∣∣∣ . (1.3)

A function f(z) ∈ Ap is said to be β-uniformly convex of order α, (−p ≤ α < p), β ≥ 0

and z ∈ E, denoted by β −K(α, p), if and only if

Re

{
1 +

zf ′′(z)

f ′(z)
− α

}
≥ β

∣∣∣∣1 + z
f ′′(z)

f ′(z)
− p
∣∣∣∣ . (1.4)

Notice that, β − S(α, 0) = β − S(α), β − K(α, 0) = β − K(α), 0 − S(α) = S(α) and

0−K(α) = K(α), where β −S(α) and β −K(α) are the classes of β-uniformly starlike

and β-uniformly convex functions of order α, (−1 ≤ α < 1).S(α) and K(α) are the

popular classes of starlike and convex functions of order α, (0 ≤ α < 1).

Obviously, f ∈ β −K(α, p) if and only if zf ′ ∈ β − S(α, p). The incomplete beta

function φp(a, c; z) is defined by

φp(a, c; z) = zp +
∞∑

k=p+n

(a)k−p
(c)k−p

zk (1.5)

for a ∈ IR and c ∈ IR \ z0 where z0 = {0,−1,−2, · · · }, z ∈ E. (a)k is the Pochhammer

symbol defined by

(a)k =
Γ(a+ k)

Γ(a)
=

{
1 : k = 0

a(a+ 1) · · · (a+ k − 1) : k ∈ IN

Next consider Lp(a, c) which is motivated from Carlson - Shaffer operator [1] defined by

Lp(a, c)f(z) = φp(a, c; z) ∗ f(z), for f ∈ Ap

= zp +
∞∑

k=p+n

(a)k−p
(c)k−p

akz
k, z ∈ E. (1.6)
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Definition 1 : Let µ > 0 and γ, η ∈ IR. Then in terms of the Gauss hypergeometric

function 2F1 the generalized fractional integral operator Iµ,γ,η0,z of a function is defined

by

Iµ,γ,η0,z f(z) =
z−µ−γ

Γ(µ)

∫ z

0
(z − t)µ−1f(t) 2F1(µ+ γ,−η;µ; 1− t

z
)dt

where the function f(z) is analytic in a simply-connected region of the z-plane containing

the origin with order

f(z) = 0(|z|ε), z → 0 (1.7)

for

ε > max{0, γ − η} − 1 (1.8)

and the multiplicity of (z − t)µ−1 is removed by requiring log(z − t) to be real when

(z − t) > 0.

Definition 2 : Let 0 ≤ µ < 1 and γ, η ∈ IR. Then the generalized fractional derivative

operator Jµ,γ,η0,z of a function f(z) is defined by

Jµ,γ,η0,z f(z) =
1

Γ(1− µ)

d

dz

{
zµ−γ

∫ z

0
(z − t)−µf(t) 2F1(γ − µ, 1− η; 1− µ; 1− t

z
)dt

}
(1.9)

where the function f(z) is analytic in a simply-connected region of z-plane containing

the origin, with the order as given in (1.7) and multiplicity of (z − t)−µ is removed by

requiring log(z − t) to be real when (z − t) > 0.

Notice that

Lp(m+ 1, 1)f(z) =
zp

(1− z)m+p
∗ f(z)

= zp +
∞∑

k=p+n

(m+ 1)k−p
(1)k−p

akz
k

= Dm+p−1f(z) (1.10)

is the Ruscheweyh derivative of order m. Also note that,

Jµ,µ,η0,z f(z) = Dµ
0,zf(z) (0 ≤ µ < 1) (1.11)

is the fractional derivative operator of order µ. Consider

Uµ,γ,η0,z f(z) =

{
Γ(1+p−γ)Γ(1+p+η−µ)

Γ(1+p)Γ(1+p+η−γ) zγJµ,γ,η0,z ; 0 ≤ µ < 1
Γ(1+p−γ)Γ(1+p+η−µ)

Γ(1+p)Γ(1+p+η−γ) zγI−µ,γ,η0,z ;−∞ < µ < 0
(1.12)
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Let

Mµ,γ,η
0,z f(z) = φp(a, c, z) ∗ Uµ,γ,η0,z f(z)

= zp +

∞∑
k=p+n

(a)k−p(1 + p)k−p(1 + p+ η − γ)k−p
(c)k−p(1 + p− γ)k−p(1 + p+ η − µ)k−p

akz
k (1.13)

for a,∈ IR, c ∈ IR \ z0, z0 = {0,−1,−2, · · · } (1.14)

Denote S(µ, γ, η, α, β) subclass of functions f ∈ Ap satisfying

Re

{
z(Mµ,γ,η

0,z f(z))′

Mµ,γ,η
0,z f(z)

− α

}
≥

∣∣∣∣∣z(M
µ,γ,η
0,z f(z))′

Mµ,γ,η
0,z f(z)

− p

∣∣∣∣∣ (1.15)

(−∞ < µ < 1;−∞ < γ < 1; η ∈ IR+;−p ≤ α < p;β ≥ 0; a ∈ IR; c ∈ IR \ z0; z ∈ E)

(1.16)

LetK(µ, γ, η, α, β) = S(µ, γ, η, α, β)∩Tp. It is also interesting to note thatK(µ, γ, η, α, β)

extends to the class of starlike, convex, β-uniformly starlike, β-uniformly convex, β-

uniformly pre-starlike, parabolic starlike and convex functions for suitable choice of the

parameter a, c, µ, γ, η, α and β. For instance;

1. For a = c;µ = γ = 0 the class reduces to β − S(α, p).

2. For a = c;µ = γ = 1 the class reduces to β −K(α, p).

3. For a = 2− 2α, c = 1;µ = γ = 0 the class reduces to β-prestarlike functions.

4. For a = c, µ = γ = 0, α = 2ρ − 1, (0 ≤ ρ < 1) the class reduces to parablic starlike

of order ρ.

5. For a = c, µ = γ = 1, α = 2ρ− 1, (0 ≤ ρ < 1) the class reduces to parabolic convex

of order ρ.

Several other classes studied by different authors can be derived fromK(µ, γ, η, α, β).
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2. Coefficient Estimates

Theorem 2.1 : A function f(z) defined by (1.1) is in S(µ, γ, η, α, β) if

∞∑
k=p+n

[k(1 + β)− (α+ pβ)]g(k)|ak| ≤ p− α (2.1)

with the limits for the parameters given in (1.16).

Proof : It suffices to show that

β

∣∣∣∣∣z(M
µ,γ,η
0,z f(z))′

Mµ,γ,η
0,z f(z)

− p

∣∣∣∣∣−Re
{
z(Mµ,γ,η

0,z f(z))′

Mµ,γ,η
0,z f(z)

− p

}
≤ p− α.

Notice that

β

∣∣∣∣∣z(M
µ,γ,η
0,z f(z))′

Mµ,γ,η
0,z f(z)

− p

∣∣∣∣∣−Re
{
z(Mµ,γ,η

0,z f(z))′

Mµ,γ,η
0,z f(z)

− p

}

≤ (1 + β)

∣∣∣∣∣z(M
µ,γ,η
0,z f(z))′

Mµ,γ,η
0,z f(z)

− p

∣∣∣∣∣ ≤
(1 + β)

∞∑
k=p+n

(k − p)g(k)|ak|

1−
∞∑
k=p

g(k)|ak|

where

g(k) =
(a)k−p(1 + p)k−p(1 + p+ η − γ)k−p

(c)k−p(1 + p− γ)k−p(1 + p+ η − µ)k−p
. (2.2)

The last inequality is bounded above by (p− α) if

∞∑
k=p+n

[k(1 + β)− (α+ pβ)]g(k)|ak| ≤ p− α.

This completes the proof.

Next, we state and prove the necessary and sufficient condition for f(z) ∈ K(µ, γ, η, α, β).

Theorem 2.2 : A function f(z) given by (1.2) is in the class K(µ, γ, η, α, β), if and

only if
∞∑

k=p+n

[k(1 + β)− (α+ pβ)]g(k)ak ≤ p− α (2.3)

with limits for the parameters given by (1.16).

Proof : In view of Theorem 2.1, we need only to prove the sufficient part. Let f(z) ∈
K(µ, γ, η, α, β) and z be real. Then by relation (1.15)

Re

{
z(Mµ,γ,η

0,z f(z))′

Mµ,γ,η
0,z f(z)

− α

}
≥ β

∣∣∣∣∣z(M
µ,γ,η
0,z f(z))′

Mµ,γ,η
0,z f(z)

− p

∣∣∣∣∣
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p−
∞∑

k=p+n

kg(k)akz
k−p

1−
∞∑

k=p+n

g(k)akzk−p
− α ≥ β

∣∣∣∣∣∣∣∣∣
∞∑

k=p+n

(k − p)g(k)akz
k−p

1−
∞∑

k=p+n

g(k)akzk−p

∣∣∣∣∣∣∣∣∣ .
Allowing z → 1 along the real axis, we obtained the desired inequality. The result (2.2)

is sharp for

f(z) = zp − p− α
[k(1 + β)− (α+ pβ)]g(k)

zp+n, n ∈ IN. (2.4)

Corollary 1 : Let the function f(z) defined by (1.2) be in the class K(µ, γ, η, α, β).

Then

ak ≤
p− α

[k(1 + β)− (α+ pβ)]g(k)
(k > p+ n, n ∈ IN)

with equality for the function f(z) given by

f(z) = zp − p− α
[k(1 + β)− (α+ pβ)]g(k)

zp+n; (n ∈ IN).

3. Connection with other Integral Operators

Theorem 3.1 : Let a(1+p)(1+p+η−γ)
c(1+p−γ)(1+p+η−µ) ≤ 1 for the limits of the parameters given by

(−∞ < µ < 1;−∞ < γ < 1; η ∈ IR+;−p ≤ α < p;β ≥ 0; a ∈ IR; c ∈ IR \ z0; z ∈ E).

Also let the function f(z) defined by (1.2) satisfy

∞∑
k=p+n

[k(1 + β)− (α+ pβ)]g(k)ak
p− α

≤ c(1 + p− γ)(1 + p+ η − µ)

a(1 + p)(1 + p+ η − γ)
. (3.1)

Then Mµ,γ,η
0,z f(z) ∈ K(µ, γ, η, α, β) where g(k) is given by (2.2).

Proof : We have

Mµ,γ,η
0,z f(z) = zp −

∞∑
k=p+n

(a)k−p(1 + p)k−p(1 + p+ η − γ)k−p
(c)k−p(1 + p− γ)k−p(1 + p+ η − µ)k−p

akz
k

= zp −
∞∑

k=p+n

g(k)akz
k (3.2)

where

g(k) =
(a)k−p(1 + p)k−p(1 + p+ η − γ)k−p

(c)k−p(1 + p− γ)k−p(1 + p+ η − µ)k−p
. (3.3)

Under the hypothesis of the theorem, we observe that the function g(k) is a non-

increasing function, that is, g(p+ n) ≤ g(p+ 1) for all n ∈ IN . Thus,

0 < g(p+ n) ≤ g(p+ 1) =
a(1 + p)(1 + p+ η − γ)

c(1 + p− γ)(1 + p+ η − µ)
. (3.4)
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Using (3.1) and (3.4), we get

∞∑
k=p+n

[k(1 + β)− (α+ pβ)]g2(k)

(p− α)
ak ≤ g(2)

∞∑
k=p+n

[k(1 + β)− (α+ pβ)]

(p− α)
g(k) ≤ 1.

Therefore, by Theorem 2.2 we conclude that Mµ,γ,η
0,z f(z) ∈ K(µ, γ, η, α, β).

Remark : The equality in (3.1) is attained for the function

f(z) = zp − c(p− α)(1 + p− γ)(1 + p+ η − µ)

a(1 + p+ β − α)(1 + p)(1 + p+ η − γ)
zp+1. (3.5)

Corollary 2 : Let µ, γ, η ∈ IR such that

µ ≥ 0, γ < 1 + p,max{µ, γ} − (1 + p) < η ≤ µ(γ − (2 + p))

γ
(3.6)

also let the function f(z) defined by (1.2) satisfy

∞∑
k=p+n

[k(1 + β)− (α+ pβ)]

p− α
ak ≤

(1 + p− γ)(1 + p+ η − µ)

(1 + p)(1 + p+ η − γ)
(3.7)

for −p ≤ α < p, β ≥ 0. Then Mµ,γ,η
0,z f(z) = Jµ,γ,η0,z f(z) ∈ β − S(α, p).

Proof : The Corollary follows from Theorem 2.2 by setting a = c.

Remark : In Corollary 2 if f(z) is given by (1.2) and p = 1 we get, corresponding

result due to Jamal M. Shenan [6].

Corollary 3 : Let µ, γ, η ∈ IR such that

µ ≥ 0, γ < 1 + p,max{µ, γ} − (1 + p) < η ≤ µ(γ − (2 + p))

γ

also let the function f(z) defined by (1.2) satisfy

∞∑
k=p+n

k[k(1 + β)− (α+ pβ)]

p− α
ak ≤

c(1 + p− γ)(1 + p+ η − µ)

a(1 + p)(1 + p+ η − γ)
(3.8)

for −p ≤ α < p, β ≥ 0, a = c. Then Mµ,γ,η
0,z f(z) = Jµ,γ,η0,z f(z) ∈ β −K(α, p).

Proof : The corollary follows from Theorem 2.2 by setting a = c.

Remark : In Corollary 3, if f(z) is given by (1.2) and p = 1, we get the corresponding

result due to Jamal M. Shenan [6].

Corollary 4 : Let µ = γ and η be real such that −∞ < µ < 1, also let the function

defined by (1.2) satisfy

∞∑
k=p+n

[k(1 + β)− (α+ pβ)]

(p− α)
ak ≤

c(1 + p− µ)

a(1 + p)
(3.9)
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for −p ≤ α < p, β ≥ 0. Then Mµ,γ,η
0,z f(z) = Dµ

0,zf(z) ∈ β − S(α, p).

Corollary 5 : Let µ = γ and η be real such that −∞ < µ < 1, also let the function

defined by (1.2) satisfy

∞∑
k=p+n

k[k(1 + β)− (α+ pβ)]

(p− α)
ak ≤

(1 + p− µ)

(1 + p)
(3.10)

for −p ≤ α < p, β ≥ 0. Then Mµ,γ,η
0,z f(z) = Dµ

0,zf(z) ∈ β −K(α, p).

Proof : The corollary 4 and 5 follow from Theorem 2.2 by setting µ = γ, a = c.

Corollary 6 : Let µ = γ = 0 and η be real such that a ∈ IR, c ∈ IR \ z0, z0 =

{0,−1,−2, · · · }, also let the function defined by (1.2) satisfy

∞∑
k=p+n

[k(1 + β)− (α+ pβ)]

p− α
ak ≤

c

a
(3.11)

for −p ≤ α < p, β ≥ 0. Then Mµ,γ,η
0,z f(z) = φp(a, c; z) ∗ f(z) ∈ β − S(α, p).

Corollary 7 : Let µ = γ = 0 and η be real such that a ∈ IR \ z0, z0 = {0,−1,−2, · · · },
also let the function defined by (1.2) satisfy

∞∑
k=p+n

k[k(1 + β)− (α+ pβ)]

p− α
ak ≤

c

a
(3.12)

for −p ≤ α < p, β ≥ 0. Then Mµ,γ,η
0,z f(z) = φp(a, c; z) ∗ f(z) ∈ β −K(α, p).

Proof : The Corollary 6 and 7 follow from Theorem 2.2 by setting µ = γ = 0.

4. Results on Modified Hadamard Product

Theorem 4.1 : Let the functions f(z) and g(z) defined by

f(z) = zp −
∞∑

k=p+n

akz
k and (4.1)

g(z) = zp −
∞∑

k=p+n

bkz
k (4.2)

belongs to K(µ, γ, η, α, β) and K(µ, γ, η, ξ, β), respectively. Also assume that
a(1+p)(1+p+η−γ)
c(1+p−γ)(1+pη−µ) ≤ 1. Then (f ∗ g)(z) ∈ K(µ, γ, η, δ, β) where

δ = p− (1 + β)(p− α)(p− ξ)
(1 + p+ β − α)(1 + p+ β − ξ)g(p+ 1)− (p− α)(p− ξ)

(4.3)
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and the result is sharp for

f(z) = zp − (p− α)

(1 + p+ β − α)g(p+ 1)
zp+1

g(z) = zp − (p− ξ)
(1 + p+ β − ξ)g(p+ 1)

zp+1.

Proof : To prove the theorem it is sufficient to show that

∞∑
k=p+n

[k(1 + β)− (α+ pβ)]

(p− δ)
g(k)akbk ≤ 1 (4.4)

where g(k) is defined by (3.3) and δ defined in (4.3).

Now, f(z) ∈ K(µ, γ, η, α, β) and g(z) ∈ K(µ, γ, η, ξ, β) and thus, we have

∞∑
k=p+n

[k(1 + β)− (α+ pβ)]

p− α
g(k)ak ≤ 1 (4.5)

∞∑
k=p+n

[k(1 + β)− (ξ + pβ)]

p− ξ
g(k)bk ≤ 1. (4.6)

By applying Cauchy-Schwarz inequality to (4.5) and (4.6) we get

∞∑
k=p+n

√
[(k(1 + β)− (α+ pβ)][k(1 + β)− (ξ + pβ)]√

(p− α)(p− ξ)
g(k)

√
akbk ≤ 1. (4.7)

In view of (4.4) it suffices to show that

∞∑
k=p+n

[k(1 + β)− (δ + pβ)]

p− δ
g(k)akbk

≤
∞∑

k=p+n

√
[k(1 + β)− (α+ pβ)][k(1 + β)− (ξ + pβ)]√

(p− α)(p− ξ)
g(k)

√
akbk

or equivalently√
akbk ≤

√
[k(1 + β)− (α+ pβ)][k(1 + β)− (ξ + pβ)]√

(p− α)(p− ξ)
(p− δ)

[k(1 + β)− (δ + pβ)]
for k ≥ p+1.

(4.8)

In view of (4.7) and (4.8) it is enough to show that√
(p− α)(p− ξ)

g(k)
√

[k(1 + β)− (α+ pβ)][k(1 + β)− (ξ + pβ)]

≤
√

[k(1 + β)− (α+ pβ)][k(1 + β)− (ξ + pβ)](p− δ)√
(p− α)(p− ξ)[k(1 + β)− (δ + pβ)]
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which simplifies to

δ ≤ p− (1 + β)(k − p)(p− α)(p− ξ)
[k(1 + β)− (α+ pβ)][k(1 + β)− (ξ + pβ)]g(k)− (p− α)(p− ξ)

(4.9)

where

g(k) =
(a)k−p(1 + p)k−p(1 + p+ η − γ)k−p

(c)k−p(1 + p− γ)k−p(1 + p+ η − µ)k−p
for k ≥ p+ 1.

Notice that g(k) is decreasing function of k (k ≥ p + 1) and thus δ can be chosen as

below.

δ = p− (1 + β)(p− α)(p− ξ)
(1 + p+ β − α)(1 + p+ β − ξ)g(p+ 1)− (p− α)(p− ξ)

(4.10)

where

g(p+ 1) =
a(1 + p)(1 + p+ η − γ)

c(1 + p− γ)(1 + p+ η − µ)
. (4.11)

This completes the proof.

Theorem 4.2 : Let the function f(z) and g(z) defined as in Theorem 4.1 be in the

class K(µ, γ, η, α, b). Then (f ∗ g)(z) ∈ K(µ, γ, η, δ, β), where

δ = p− (1 + β)(p− α)2

(1 + p+ β − α)2g(p+ 1)− (p− α)2

for g(p+ 1) given by (4.11).

Proof : Substituting α = ξ in Theorem 4.1, the result follows.

Theorem 4.3 : Let the function f(z) defined by (1.2) be in the class K(µ, γ, η, α, β)

and let g(z) = zp −
∞∑

k=p+n

bkz
k for |bk| ≤ 1. Then (f ∗ g)(z) ∈ K(µ, γ, η, α, β).

Proof : Notice that

∞∑
k=p+n

[k(1 + β)− (α+ pβ)]g(k)|akbk|

=
∞∑

k=p+n

[k(1 + β)− (α+ pβ)]g(k)ak|bk|

≤
∞∑

k=p+n

[k(1 + β)− (α+ pβ)]g(k)ak

≤ p− α using Theorem 2.2.

Hence (f ∗ g)(z) ∈ K(µ, γ, η, α, β).
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Corollary 8 : Let the function f(z) defined by (1.2) be in the class K(µ, γ, η, α, β).

Also let (z) = zp −
∞∑

k=p+n

bkz
k for 0 ≤ bk ≤ 1. Then (f ∗ g)(z) ∈ K(µ, γ, η, α, β).

5. Inclusion Properties

In this Section we give the inclusion theorems for functions in the classK(µ, γ, η, α, β).

Theorem 5.1 : Let the function f(z) and g(z) defined by (4.1) and (4.2) be in the

class K(µ, γ, η, α, β). Then the function h(z) defined by

h(z) = zp −
∞∑

k=p+n

(a2
k + b2k)z

k

is in the class K(µ, γ, η, θ, β) where

θ = p− 2(1 + β)(p− α)2

(1 + p+ β − α)2g(p+ 1)− 2(p− α)2

with g(p+ 1) given by (4.11).

Proof : In view of Theorem 2.2 it is sufficient to show that

∞∑
k=p+n

[k(1 + β)− (θ + pβ)]

p− θ
g(k)(a2

k + b2k) ≤ 1. (5.1)

Notice that f(z) and g(z) belong to K(µ, γ, η, α, β) and so

∞∑
k=p+n

[
(k(1 + β)− (α+ pβ))g(k)

(p− α)

]2

a2
k ≤

 ∞∑
k=p+n

(k(1 + β)− (α+ pβ))g(k)

p− α
ak

2

≤ 1

(5.2)

∞∑
k=p+n

[
(k(1 + β)− (α+ pβ))g(k)

(p− α)

]2

b2k ≤

 ∞∑
k=p+n

(k(1 + β)− (α+ pβ))g(k)

p− α
bk

2

≤ 1.

(5.3)

Adding (5.2) and (5.3), we get

∞∑
k=p+n

1

2

[
(k(1 + β)− (α+ pβ))g(k)

(p− α)

]2

(a2
k + b2k) ≤ 1. (5.4)

thus, (5.1) will hold if

k(1 + β)− (θ + pβ))

(p− θ)
≤ 1

2

g(k)[k(1 + β)− (α+ pβ))]2

(p− α)2
.
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That is, if

θ ≤ p− 2(1 + β)(k − p)(p− α)2

[k(1 + β)− (α+ β)]2g(k)− 2(p− α)2
.

Notice that, θ can be further improved by using the fact that g(p + n) ≤ g(p + 1) for

n ∈ IN . Therefore,

θ = p− 2(1 + β)(p− α)2

(1 + p+ β − α)2g(p+ 1)− 2(p− α)2

where g(p+ 1) is given by (4.11).

Theorem 5.2 : Let the function f and g belong to the class K(µ, γ, η, α, β). Then for

λ ∈ [0, 1], the function h(z) = (1− λ)f(z) + λg(z) is in the class K(µ, γ, η, α, β).

Proof : Since f(z) and g(z) are in the class K(µ, γ, η, α, β) they satisfy inequality (2.2).

Therefore, h(z) defined by

h(z) = (1− λ)f(z) + λg(z) = zp −
∞∑

k=p+n

ckz
k

where ck = (1− λ)ak + λbk > 0 is in the class K(µ, γ, η, α, β).

Hence, K(µ, γ, η, α, β) is indeed a convex set.

Theorem 5.3 : Let fj(z) defined as

fj(z) = zp −
∞∑

k=p+n

ak,jz
k, j = 1, 2, · · · , `

belongs to the class K(µ, γ, η, α, β). Then the function

h(z) =
1

`

∑̀
j=1

fj(z)

is also in the class K(µ, γ, η, α, β).

Proof : Since fj(z) ∈ K(µ, γ, η, α, β), in view of Theorem 2.2, we have

∞∑
k=p+n

[k(1 + β)− (α+ pβ)]g(k)

(p− α)
ak,j ≤ 1. (5.5)

Now,

1

`

∑̀
j=1

fj(z) = zp − 1

`

∑̀
j=1

∞∑
k=p+n

ak,jz
k = zp −

∞∑
k=p+n

ekz
k
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where ek = 1
`

∑̀
j=1

ak,j . Notice that

∞∑
k=p+n

[k(1 + β)− (α+ pβ)]g(k)

(p− α)

1

`

∑̀
j=1

ak,j ≤ 1 using (5.5).

Thus, h(z) ∈ K(µ, γ, η, α, β).

6. Extreme Points of the Class K(µ, γ, η, α, β)

Theorem 6.1 : Let f1(z) = zp and

fk(z) = zp − (p− α)

[k(1 + β)− (α+ pβ)]g(k)
zk, (k ≥ p+ 1).

Then f(z) ∈ K(µ, γ, η, α, β) if and only if, f(z) can be expressed in the form

f(z) =
∞∑
k=1

λkfk(z) (6.1)

where λk ≥ 0 and
∞∑
k=1

λk = 1.

Proof : Let f(z) be expressible in the form

f(z) =

∞∑
k=1

λkfk(z).

Then

f(z) = zp −
∞∑
k=2

(p− α)

[k(1 + β)− (α+ pβ)]g(k)
λkz

k.

Now,

∞∑
k=2

(p− α)λk
[k(1 + β)− (α+ pβ)]g(k)

[k(1 + β)− (α+ pβ)]g(k)

(p− α)
=
∞∑
k=2

λk = 1− λ1 ≤ 1.

Therefore, f(z) ∈ K(µ, γ, η, α, β).

Conversely, suppose that f(z) ∈ K(µ, γ, η, α, β). Thus

ak ≤
p− α

[k(1 + β)− (α+ pβ)]g(k)

Setting

λk =
[k(1 + β)− (α+ pβ)]g(k)

(p− α)
ak
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and λ1 = 1−
∞∑
k=2

λk, we see that f(z) can be expressed in the form (6.1).

Corollary 9 : The extreme points of the class K(µ, γ, η, α, β) are f1(z) = zp and

fk(z) = zp − p− α
[k(1 + β)− (α+ pβ)]g(k)]

zk, k ≥ p+ 1.

7. Growth and Distortion Theorems

Theorem 7.1 : Let the function f(z) defined by (1.2) be in the class K(µ, γ, η, α, β).

Then

||Mµ,γ,η
0,z f(z)| − |z|p| ≤ c(p− α)(1 + p− γ)(1 + p+ η − µ)

a(1 + p)(1 + p+ η − γ)(1 + p+ β − α)
|z|p+1 and (7.1)

||(Mµ,γ,η
0,z f(z))′| − p|z|p−1| ≤ c(p− α)(1 + p− γ)(1 + p+ η − µ)

a(1 + p+ η − γ)(1 + p+ β − α)
|z|p. (7.2)

Remark : The result (7.1) and (7.2) are sharp for the extremal function f(z) given by

f(z) = zp − c(p− α)(1 + p− γ)(1 + p+ η − µ)

a(1 + p)(1 + p+ η − γ)(1 + p+ β − α)
zp+1. (7.3)

Corollary 10 : Let Mµ,γ,η
0,z f(z) ∈ K(µ, γ, η, α, β) then the disc |z| < 1 is mapped onto

a domain that contains the disc

|w| < 1 +
c(p− α)(1 + p− γ)(1 + p+ η − µ)

a(1 + p)(1 + p+ η − γ)(1 + p+ β − α)
.

Also (Mµ,γ,η
0,z f(z))′ maps the disc |z| < 1 onto a domain that contains the disc

|w| < p+
c(p− α)(1 + p− γ)(1 + p+ η − µ)

a(1 + p+ η − γ)(1 + p+ β − α)

Remark : We can obtain the growth and distortion theorems for Jµ,γ,η0,z f(z), Dµ
0,zf(z)

and φp(a, c, z) by accordingly initializing the parameters.

8. Family of Class Preserving Integral Operators

Here, we discuss some class preserving integral operators. Consider F (z) defined by

F (z) = (Jc,pf)(z) =
c+ p

zc

∫ z

0
tc−1f(t)dt for (f ∈ Ap; c > −p) (8.1)

Let G(z) be defined by

G(z) = zp−1

∫ z

0

f(t)

tp
dt. (8.2)
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The Komatu operator [5] is defined by

H(z) = P dc,pf(z) =
(c+ p)d

Γ(d)zc

∫ z

0
tc−1

(
log

z

t

)d−1
f(t)dt (8.3)

(d > 0, c > −p, z ∈ E).

Another integral operator I(z), which is the generalized Jun-Kim-Srivastava integral

operator defined by

I(z) = Qdc,pf(z) =

(
d+ c+ p− 1

c+ p− 1

)
d

zc

∫ z

0
tc−1(1− t

z
)d−1f(t)dt (d > 0, c > −p, z ∈ E)

(8.4)

Theorem 8.1 : Let d > 0, c > −p and f(z) belong to the class K(µ, γ, η, α, β). Then

the function H(z) defined by (8.3) is p-valent in the disc |z| < R1, where

R1 = inf
k

{
[k(1 + β)− (α+ pβ)](c+ k)dg(k)

k(c+ p)d(p− α)

} 1
k−p

. (8.5)

The result is sharp for the function f(z) given by

f(z) = zp − k(c+ p)d(p− α)

[k(1 + β)− (α+ pβ)](c+ k)dg(k)
zp+n, n ∈ IN.

Proof : Notice that H(z) ∈ K(µ, γ, η, α, β) and has the form

H(z) = zp −
∞∑

k=p+n

(
c+ p

c+ k

)d
akz

k. (8.6)

In order to prove the assertion it is enough to show that∣∣∣∣H ′(z)zp−1
− p
∣∣∣∣ ≤ p in |z| < R1. (8.7)

Now,

∣∣∣∣H ′(z)zp−1
− p
∣∣∣∣ =

∣∣∣∣∣∣−
∞∑

k=p+n

k

(
c+ p

c+ k

)d
akz

k−p

∣∣∣∣∣∣ ≤
∞∑

k=p+n

k

(
c+ p

c+ k

)d
ak|z|k−p.

The last inequality is bounded above by p if

∞∑
k=p+n

k
(
c+p
c+k

)d
ak|z|k−p

p
≤ 1. (8.8)
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Given that f(z) ∈ K(µ, γ, η, α, β) and so, by Theorem 2.2

∞∑
k=p+n

[k(1 + β)− (α+ pβ)]

p− α
g(k)ak ≤ 1. (8.9)

Thus inequality (8.8) will hold if

k

(
c+ p

c+ k

)d
|z|k−p ≤ [k(1 + β)− (α+ pβ)]

p− α
g(k) for k ≥ p+ n.

That is, if

|z| ≤
{

[k(1 + β)− (α+ pβ)](c+ k)dg(k)

k(c+ p)d(p− α)

} 1
k−p

for k ≥ p+ n, n ∈ IN.

The result follows by setting |z| = R1.

Theorem 8.2 : Let d > 0, c > −p and f(z) belong to the class K(µ, γ, η, α, β). Then

the function I(z) defined by (8.4) is p-valent in the disc |z| < R2, where

R2 = inf
k

{
[k(1 + β)− (α+ pβ)]Γ(d+ c+ k)Γ(c+ p)g(k)

k(p− α)Γ(c+ k)Γ(d+ c+ p)

} 1
k−p

.

The result is sharp for the function given by

f(z) = zp − k(p− α)Γ(c+ k)Γ(d+ c+ p)

[k(1 + β)− (α+ pβ)]Γ(d+ c+ k)Γ(c+ p)g(k)
zp+n, n ∈ IN.

Proof : Notice that I(z) ∈ K(µ, γ, η, α, β) and has the form

I(z) = zp −
∞∑

k=p+n

Γ(c+ k)Γ(d+ c+ p)

Γ(d+ c+ k)Γ(c+ p)
akz

k.

Following arguments similar to those in Theorem 8.1 we get

|z| ≤
{

[k(1 + β)− (α+ pβ)]Γ(d+ c+ k)Γ(c+ p)g(k)

k(p− α)Γ(c+ k)Γ(d+ c+ p)

} 1
k−p

for k ≥ p+ n, n ∈ IN.

9. Radius of Uniform Starlikeness, Convexity and Close-to

-Convexity

Theorem 9.1 : Let the function f(z) defined by (1.2) be in the class K(µ, γ, η, α, β).

Then f(z) is p-valently starlike of order s, (0 ≤ s < p) in the disc |z| ≤ R3, where

R3 = inf
k

{
(p− s)[k(1 + β)− (α+ pβ)]g(k)

(k − s)(p− α)

} 1
k−p

.
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the result is sharp with the extremal function given by (2.4).

Proof : It is sufficient to show that∣∣∣∣z f ′(z)f(z)
− 1

∣∣∣∣ ≤ 1− s for 0 ≤ s < p

and |z| < R3. With fairly straightforward calculation we can easily show that

|z| ≤
{

(p− s)[k(1 + β)− (α+ pβ)]g(k)]

(k − s)(p− α)

} 1
k−p

.

Setting |z| = R3 we get the desired result.

Next, we state the theorems for radius of convexity and close-to-convexity.

Theorem 9.2 : Let the function f(z) defined by (1.2) be in the class K(µ, γ, η, α, β).

Then f(z) is p-valently convex of order s, (0 ≤ s < p) in the disc |z| ≤ R4 where

R4 = inf
k

{
p(p− s)[k(1 + β)− (α+ pβ)]g(k)

k(k − s)(p− α)

} 1
k−p

.

The result is sharp with the extremal function given by (2.4).

Theorem 9.3 : Let the function f(z) defined by (1.20 be in the class K(µ, γ, η, α, β).

Then f(z) is p-valently close-to-convex of order s, (0 ≤ s < p) in the disc |z| ≤ R5 where

R5 = inf
k

{
(p− s)[k(1 + β)− (α+ pβ)]g(k)]

k(p− α)

} 1
k−p

.

The result is sharp for the extremal function given by (2.4).
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